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A rigid plane thin sheet is sliding steadily a t  speed U close to a plane wall, in a fluid 
of kinematic viscosity v.  The sheet is infinitely wide and is of length L in the direction 
of motion, and its leading edge is a distance h, 4 L from the wall. A solution is sought 
for arbitrary finite values of R = Uhi/vL. In  the limit as e = h,/L+O, the problem 
reduces to that of solving the boundary-layer equation in the gap region between sheet 
and wall, and this is done here both by an empirical linearization, and by direct 
numerical methods. The solutions have the property that they reduce to  those 
predicted by lubrication theory when R is small, and to  those predicted by an inviscid 
small-gap theory when R is large. Special attention is paid to the correct entrance 
and exit conditions, and to the location of the centre of pressure. 

1. Introduction 
Consider two types of flow in a narrow gap. One is that described by the so-called 

'lubrication theory' (e.g. as in Cameron 1966). In its simplest form, this theory 
assumes (in addition to narrowness of the gap), that  inertia is negligible, and that 
the pressure vanishes a t  entrance and exit from the gap. 

For example, let the upper boundary y = h(x) ,  0 6 x 6 L,  of a two-dimensional 
flow domain be fixed in space, while the lower plane boundary y = 0 moves a t  velocity 
U past it, in an incompressible fluid of viscosity p. Then, according t o  lubrication 
theory, the pressure p is a function of x only, and the stream function Ilr(x, y) is a 
cubic function of y. Enforcing the boundary conditions a t  y = 0 and y = h(x)  leads 
immediately to Reynolds' equation for the pressure, whose solution with zero end 
pressures is 

1 

I n  particular, for a flat plate a t  angle of attack a, i.e. 

h(x) = h,-ax, 

3p ua .( L - 2)  
p (x )  = ~~ 

h(iL)  (h(x))2 . 

we have 
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On the other hand, if the boundary y = h(x) is the lower surface of an airfoil in 
ground effect, then (Tuck, 1980, 1981) an almost-conventional aerodynamic analysis 
can be performed, to determine the net circulation and the pressure, providing we 
assume that the viscosity is negligible, and that the pressure vanishes a t  the trailing 
edge. The resulting ‘inviscid small-gap theory’ has the property that the velocity is 
predominantly in the x-direction and uniform with respect to y, and its magnitude 
is inversely proportional to h(x). If we substitute this result into the Bernoulli 
equation, and enforce the trailing-edge condition, the result for the pressure is 

for all h(x), where p is the (constant) fluid density. 
The results (1.3) and (1.4) have some features in common, and some of stark 

contrast. In  both cases, the pressure depends on x alone, and vanishes at x = L. But 
the assumptions from which these two results are obtained are incompatible with each 
other; indeed opposite in effect. The pressure (1.3) is proportional to the viscosity ,u 
and independent of the density p ;  the reverse is true of (1.4), indicating the relative 
importance of viscosity and inertia in each case. 

Another interesting point of difference between (1.3) and (1.4) concerns the actual 
x-wise variation in pressure. In neither case is the distribution symmetric about the 
midpoint x = iL. In  lubrication theory, the greatest forces tend to occur in the 
narrowest gaps, so that the centre of pressure for (1.3) is toward the rear, with x > $L, 
On the other hand, the Bernoulli forces on a ground-effect airfoil are greatest where 
the velocity is least, and this is where the gap is a t  its widest, so that the centre of 
pressure for (1.4) is toward the leading edge, with x < +L. 

This particular difference was noted by Tuck (1982) as a factor in free sliding of 
a uniform plane sheet over a plane surface. Equilibrium with respect to pitching 
rotations demands that the centre of pressure and centre of gravity coincide, and this 
cannot be the case for a flat rigid sheet, in either the lubrication mode (1.3) or 
aerodynamic mode (1.4). Tuck (1982) overcame this difficulty in the aerodynamic 
mode by allowing the sheet to bend.? However, in view of the opposite tendencies 
of the centre of pressure in the two modes, it is attractive to consider some kind of 
‘amalgam’ of the two modes, in which i t  may be possible for the centre of pressure 
to be a t  the midpoint, even for a rigid sheet. 

Clearly (1.3) and (1.4) represent opposite limiting extremes of any such more 
general theory. If we note that the order of magnitude of (1.3) is 

while that of (1.4) is 
PI = p v ,  

i t  is apparent that the general theory will have to encompass a range in which p v  
and p, are comparable in magnitude, i.e. in which 

is of unit order. Then (1.3) will be the limit as R+O and (1.4) the limit as R-tco, 
of this theory. 

to bend the sheet, this moves the centre of pressure further toward the rear. 
t Bending does not help in the lubrication mode, since in tha t  mode, if we allow the fluid pressure 
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,Just what kind of theory is needed ? Clearly we can no longer assume that either 
inertia or viscosity is negligible. However, we must retain and use the common 
assumption that the gap is narrow relative to its length, so that 

h0 e = - < l .  
L 

But such a theory has long existed; i t  is nothing more or less than Prandtl’s 
boundary-layer theory ! Indeed, i t  has already been recognized by workers on 
entrance flows in pipes and ducts (see e.g. Schlichting 1960, p. 169; Williams 1963; 
Sparrow, Lin & Liindgren 1964; Keller 1975) that  the boundary-layer equation 

(1.9) 

can be used to describe the whole flow in such a duct, not just the conventional 
boundary layers close to the walls. 

The only difference between this ‘ internal ’ application of boundary-layer theory, 
and t,he original one of Prandtl for ‘external’ boundary layers, is that  the pressure 
gradient p’(r )  is now unknown. The flow domain is bounded by a surface of known 
gaomot.ry y I- h ( x ) ,  and we have 4 rather than 3 boundary conditions, namely 

1 

P 
@y @xy - @x @w = - - P ’ ( X )  + V@YYY 

@ = O ,  @ Y = U  on y = O ,  (1.10) 

@z = @Y = 0 on y = h(x ) .  (1 .11)  

Such problems have been termed ‘ inverse ’ boundary-layer problems by Keller (1978). 
The Sact tha.t the boundary-layer equation (1.9) holds formally for R = O( l ) ,  where 

R is given by (1 .7 ) ,  is now apparent. Thus, in general, boundary layers grow in the 
x-direction, starting art x = 0, and have thickness S = O(vx/U) i .  If we are interested 
in situations where viscous and inertial effects are comparable for most of the flow 
domain, necessarily this must mean that the boundary layers fill most or all of the 
gap, i.e. tha.t 6 = O(hoj when x = O ( L ) ,  which demands again that R = O(1).  

We can also see how the two limits R+O and R-t co operate to  yield lubrication 
and aerodynamic flows respectively. If R+O, the effect (providing p has the scale 
pv) is that  t,he inertia terms on the left, of (1.9) become of vanishing importance, and 
hence @ is cubic in y. On the other hand, if R+ co, while p has the scale p,, the term 
wpk.,,, is negligible (except in boundary layers of vanishing thickness a t  y = 0 and 
y = h ( x ) ) ,  and inviscid-fluid theory applies almost everywhere. 

What, we have not yet incorporated is appropriate end conditions. This is not at 
all a straightforward matter, and the correct choice of end conditions in general 
depends on the nature of the flow outside the narrow-gap region. Hence, there may 
be many such types of end conditions. In the section that follows, we derive the 
appropriate end conditions for the sliding-sheet problem. 

It is, however, clear that the usual p = 0 conditions are expected to hold in the 
lubrication limit R+O. That, is, most external flows will not be viscosity-dominated 
to tjhe ext,ent that  the gap-flow is so dominated a t  R+O, and hence the end conditions 
will tend to prescribe pressures a t  entrance and exit, that  are of the order ofp,, rather 
thanpv. Thus, if R-+O, irrespective of what O(p,) values are prescribed a t  x = 0 and 
x = L,  these values will appear to be vanishingly small relative to p,, and may be 
t,aken as zero, to leading order as R +O. Note that the above pressure argument makes 
no assumptions about the detailed nature of the inlet velocity profile, so long as it 
is such that p =: O(p1j. 

What i s  more interesting and important is the conclusion that, as soon as we do 
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wish to take some account of inertia, we must abandon the p = 0 conditions. The 
luhrication-theory literature contains many examples where corrections to  Reynolds’ 
equation are made to take some account of inertia, but these are inconsistent, unless 
the end conditions are simultaneously corrected, i.e. unless the solution starts and ends 
correctly. 

However, in view of the parabolic nature of (1.9), insofar as @(x,  y )  and the 
resulting velocity field is concerned, we need only concern ourselves with starting the 
computation correctly. Indeed we cannot prescribe more than the starting velocity 
profile, via (T(0, y ) .  However, since only the pressure gradient p’(x) appears in (1.9), 
the absolute value of the pressure remains free as an additional input parameter. 

At first sight this is hardly a significant observation, since in any case p ( x )  is only 
meaningful relative to  some external or ambient datum. However, what is really of 
significance is the change in pressure p(L) -p (0 )  between exit and entrance. For 
example, if p ( L )  is given an arbitrary value (say, zero), then p ( 0 )  must be specified, 
by matching with some external flow. I n  fact, there is an essential coupling between 
this pressure end condition, and the entrance velocity profile, or at least with its net 
volumetric flow. 

This is best illustrated by anticipating the results for the sliding-sheet example, 
to be discussed in $2, in which the end conditions are 

@ = u o y ,  p=4g1ipu~-bu; a t  x = O ,  (1.12) 

p = O  at x = L ,  (1.13) 

where uo is a constant to be determined. That is, in this case the entrance flow is a 
uniform stream of a priori unknown magnitude uo. The pressure a t  the entrance is 
set at the value predicted by Bernoulli’s equation for that  (indeterminate) flow, 
and must return to its (zero) ambient value a t  the exit z = L.  The problem must be 
solved in an inverse manner, with uo varied until the solution satisfies (1.13). 

We provide here a numerical solution of the problem so formulated. That is, we 
solve the boundary-layer equation (1.9), subject to  (1.10) on y = 0 and ( 1 . 1 1 )  on 
y = hfz), with (1.12) a t  z = 0 and (1.13) at x = L. Equivalent to ( 1 . 1 1 )  in these 
circumstances are 

(T = uoh0, - - - o on y = h(x) .  (1.14) 

The problem is solved ( a )  by linearizing, and ( b )  by finite differences. Linearization 
is a well-accepted technique for this type of problem (cf. Sparrow et al. 1964) but is 
only empirically based. However, in the present case, i t  leads to  a relatively simple 
explicit formula forp(z), from which output quantities such as net lift force and centre 
of pressure location can be computed easily, with accuracies within about 10 yo. 

Direct finite-difference solution is in principle capable of yielding arbitrarily 
accurate solutions of the problem, hut at the cost of considerable computational 
effort. I n  the present paper, a simple unsophisticated algorithm is used to check the 
accuracy of the linearized formula, and to provide a limited amount of ‘exact ’ output 
information for the sliding-sheet problem. 

an 

2. Matching for sliding thin bodies 
Consider the flow sketched in figure 1 .  A thin airfoil-like body is located close to  

the plane y = 0, so that  both its upper surface y = h+(x) and its lower surface y = h(x )  
satisfy for 0 d x < L,  

h, h+ = O ( S )  L ,  (2.1) 
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FIGURE 1. Sketch of flow situation for sliding sheets. The notation ( A ) ,  ( B ) ,  etc., denotes 
asymptotic regions defined in $2. 

where E is a small parameter and L is the body's length. An incompressible Newtonian 
viscous fluid flows past this fixed body, in such a way that there is a uniform stream 
U in the x-direction at infinity. In  order that  this flow at infinity be compatible with 
the existence of the plane non-slip boundary surface y = 0, we assume that this plane 
consists of a 'moving belt', which is itself moving a t  speed U in the +x-direction. 
Thus this flow is identical to what would be seen by an observer moving a t  speed 
U in the ---direction, accompanying a moving airfoil in the presence of a fixed plane 
wall y = 0, in an otherwise stationary fluid. 

I n  general, we must satisfy the Navier-Stokes equation 

everywhere in the flow domain, subject to 

$% = ku = 0 on y = h(x),h+(x), (2.3) 

$ , = O ,  +'y= U on y = O ;  (2.4) 

$+Uy as y++m. (2 .5)  

R = E'UL/V. (2-6) 

We see an asymptotic solution as e+O, for fixed 0(1) values of 

If h, = h(0)  = O(sL) is a typical measure of the distance between wall and body, it 
is convenient to define also the Reynolds numbers based on L and on h,, i.e. 

(2.7) 
UL 

R, = = c'R, 

noting that, if R = O(l) ,  both RL and Rh are large. 
As E + O ,  we need to  solve by matching various regions of flow. These include: 
( A )  the outer region x = O ( L ) ,  y = O(L);  
(B)  the entrance region x = O(h,), y = O(h,); 
(C) the exit region x = L+O(h,), y = Ofh,); 
( D )  the wake region 2 = O(L) > L,  y = O(h,); 
( E )  the upper boundary-layer region x = O ( L ) ,  y = h+(x)-t-O(h,); 
( F )  the gap region x = O ( L ) ,  0 < x < L, 0 c y c h(x); 

as indicated in figure 1. In  order to  establish the correct equations to be satisfied in 
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these various regions, i t  is only necessary to  perform the appropriate coordinate 
non-dimensionalization in each case. The x-wise velocity scale is taken as U in all 
regions. 

For example, in the outer region ( A ) ,  both coordinates are scaled by L. Hence (2.2) 
simply scales to itself, with v replaced by l / R L .  But, since RL = O ( E - ~ )  + co when 
E + O ,  this means that, to  leading order, viscous forces can be neglected in the outer 
region. Since the flow is irrotational far upstream, Kelvin’s circulation theorem 
demands that i t  is irrotational everywhere. Thus, we have to solve a classical- 
hydrodynamic problem for irrotational flow past a fixed surface. But, since that 
surface is a small O(e) perturbation of the plane y = 0, the outer flow is therefore such 
a small perturbation of a uniform stream, and we may write 

$b = U y + O ( s )  (2.9) 

throughout the outer region. 
For the most part, we shall not need to concern ourselves with the O(E) correction 

to  the uniform stream. However, we shall a t  least need to  observe that this correction 
can be written as a distribution of sources and sinks over the plane y = 0. If x < 0, 
the source strength is zero, since the only effective boundary is the undisturbed plane 
y = 0. If x > 0, the perturbation to the uniform stream is induced by an O ( E )  
perturbation, say y = h(x), in the boundary. If 0 < x < L ,  h(x) consists of the original 
upper boundary h+(x), plus the thickness of the upper boundary layer. If x > L, 
y = h(x) is the equation of the wake boundary, which is a continuous extension across 
x = L of the upper surface of this boundary layer. The surface y = h(x) thus appears 
like the upper boundary of a semi-infinite symmetrical airfoil, and thin-airfoil theory 
(Newman 1977, p. 129) tells us that  it is generated by a source distribution of O ( E )  
strength 2Uh’(x) per unit length. 

However, this body need not be ‘closed ’ ; there could be an apparent ‘hole ’ a t  its 
nose. That is, in addition to the continuous distribution of sources in x > 0, we shall 
have to allow for the possibility of a discrete source or sink a t  x = 0, whose O(E) flux 
m is (for the moment) unknown. Although in principle a similar isolated source or 
sink could be present at x = L also, we exclude this possibility, since i t  leads to 
solutions that cannot match the exit conditions. On the other hand, the leading-edge 
source m is of very great significance, since it determines in what proportions fluid 
passes over and under the airfoil, and hence ultimately the circulation around it and 
the lifting forces on it. 

Now, if we turn to the entrance and exit regions, in both cases the appropriate 
lengthscale is ha, and hence the Navier-Stokes equation (2.2) again scales to itself, 
but now with v replaced by l / R h .  But again, R, is large (though not as large as RL), 
and hence, in the limit as €-to, viscous forces can be neglected in both entrance and 
exit regions. 

In the entrance region (B) ,  the flow must match an irrotational flow far upstream, 
and again Kelvin’s theorem demands that it be irrotational everywhere. The only 
boundaries are the original wall y = 0, - 00 < x < 00, and a semi-infinite plane wall 
y = h,, 0 < x < co. If ( r ,  0) are polar coordinates, the entrance flow, valid in r = O(h,) 
must match as r /h ,+co ,  the limit as r/L+O of the outer-region flow. But, as we 
have seen, the latter is a combination of a uniform stream U and a source of 
(unknown) O(E)  strength m. Thus the boundary condition on the entrance-flow stream 
function at infinity is 

$b+Uy+-(O-n) m as r + m .  (2.10) 
2n 
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This irrotational entrance flow can be determined completely by conformal-mapping 
methods. If z = x + iy then the transformation 

1.8 
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. l . O  -y 
h0 

0.8 

0.6 

0.4 

0.2 

R 
- --z = [+log[+ 1 

h, 
(2.1 1)  

maps the flow region into the lower-half [-plane. The solution for the complex 
potential f = $+i$ is then 

R 
- h,f = uc+ u, log 6, (2.12) 

where u, is a constant, related to m by the equation 

m = 2h,( U-u,). (2.13) 
It can readily be verified that, when [+ co, we recover (2.10). On the other hand, 

if we let 5-0, we have x/h ,  + + co with 0 < y < h,, and in that limit 

$ + U O ! l .  (2.14) 
That is, as x-tco underneath the airfoil (within its entrance region), we obtain a 
uniform stream of yet-to-be-determined magnitude u,. All we know a t  the moment 
about u, is that its magnitude is of the same formal order with respect to c: as U,  
since (2.13) then allows m = O ( E ) ,  as required. If u, happens to equal U ,  then m = 0. 
This is the case when the airfoil traps exactly (and only) those streamlines that would 
have passed beneath it if i t  had presented no obstacle a t  all to the stream. If u, < U ,  
then m > 0, and some streamlines are diverted over the top. 

Figure 2 shows streamlines computed from (2.11) and (2.12) for uo/U = 0.5. There 
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FIGURE 3. Sketch of possible exit-region velocity profiles. 

is a stagnation point on the lower surface of the airfoil, just downstream of the leading 
edge. These streamlines are equally spaced in @ values, and the one-half speed 
reduction under the airfoil is displayed in a doubling in the asymptotic y-wise spacing 
there. 

Associated with the irrotational flow in the entrance and outer regions is a pressure 
distribution, obtainable from Bernoulli’s equation. Thus, if the ambient pressure a t  
infinity is taken as zero, we have 

P + f i 2  = p, (2.15) 
P 

where q is the velocity magnitude. We shall only be interested in the limit of (2.15) 
when x is large compared with h,, within the entrance region and under the airfoil, 
namely (from (2.14)), 

p + $3( u2 - u 2  0 ) .  (2.16) 

That is, the pressure ‘far’ to  the right (in the gap) of the entrance is related 
quadratically to the (as yet unknown) uniform velocity u, across the gap a t  that  
station. The behaviour (2.13) of the stream function, and (2.16) of the pressure, must 
now match with the initial behaviour of the gap-region flow a t  x / L  = 0, 

Turning now to the exit region (C), although i t  is still true that viscous forces are 
negligible, we can no longer call upon Kelvin’s theorem to prove irrotationality, since 
the gap flow upstream of the exit is rotational. Indeed, there is bound to be 
considerable vorticity in the exit region, and in the wake region that follows it. Figure 
3 sketches the type of velocity profiles that  might be expected during the ‘ g a p  
exibwake’ transition. However, as with the outer region, we are not really interested 
in all of the details of the flow in this region. In  fact, we have no other use for this 
region than to observe that p = O(e)pU2 throughout it. 

This important conclusion follows from the fact that  p = O(s)pU2 everywhere in 
the outer region also, by (2.15) and (2.9). But the exit region simply provides a smooth 
merging of various boundary layers. As with any boundary layer, the change in 
pressure across the layer is of a relative amount a t  most O(e2) ,  and hence the pressure 
in the exit region is also O(e)pU2.  

It is of value to contrast the exit and entrance regions, with respect to pressure 
orders. The entrance pressure is not small, only because of the source m. If m + 0, 
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then uo =k [ T ,  and p in (2.16) is of the order of p V .  But we do not allow an equivalent 
to the source m a t  the exit region, and hence p is always small there. The conclusion 
that p = O(e)pU2 in the exit region means that,  relative to the O ( p V )  values now 
of interest in the gap, the gap flow must match the exit flow a t  x =  L with zero 
pressure. 

In  the wake (U) ,  and gap ( F )  regions, the x-scale is L and the y-scale is h, 4 L. 
Hence, no longer does the Navier-Stokes equation (2.2) scale into itself. I n  effect, 
we can neglect the operator a/& relative to a/ay in the limit as e+O, and (2.2) 
simplifies to 

$y h r y y  - II.z $YYY = l ’+YYYY. (2.17) 

If actual scaled coordinates are employed, v in (2.17) is replaced by 1/R, where R 
IS defined by (2.6). Thus, when R = 0(1) (as we are assuming), viscous effects are felt 
only in these regions. Equation (2.17) is also known to hold in the upper boundary 
layer ( E ) .  

However, in the present context, we have very little interest in the wake or in the 
upper boundary layer, since in neither of these two regions does the pressure depart 
significantly from the free-stream (zero) value. As shown by Bentwich (1978), the 
wake is a region in which the fluid velocity is returning rapidly to the value U enforced 
by the moving plane y = 0, and the detailed manner of approach to a uniform flow 
can easily be computed by linearizing about it.  The upper boundary layer is to leading 
order of a conventional Blasius character, and has a negligible effect on the flow in 
the gap region. 

Finally, we come to the all-important gap region. I n  fact, all other regions serve 
only to determine the initial and final conditions for the gap-region flow, and, having 
done so, can be ignored henceforth. 

Our task is thus to  solve (2.17), subject to 4 boundary conditions, namely (2.3) on 
the lower surface y = h(x) only, and (2.4) on y = 0. We also need an initial condition 
on $ a t  x = 0. But this is just (2.14), i.e. the assertion that the flow at the start of 
the gap matches the uniform stream uo at the right edge of the entrance region. Since 
u,, is still an unknown constant, (2.14) at first sight hardly appears to serve the 
purpose of an initial condition. However, if we integrate (2.17) once with respect to 
y, yielding the usual boundary-layer equation (1.9), and introducing thereby the 
pressure gradient p’(x), we close the loop by also demanding that the pressure start 
with the value (2.16) a t  1: = 0, and end with a zero value at 1: = L. Equivalently, the 
pressure gradient must satisfy 

(2.18) 

Equation (2.18) can be thought of as ;t ‘normalization’ condition, that  ultimately 
determines the parameter uo. 

3. Linearized solution 
Suppose that u(x)  is some measure of the mean x-wise velocity 1c.,, averaged across 

the gap with respect to  y, a t  fixed station x. Then, as an  empirical approximation, 
we suppose that the nonlinear convection terms on the left of (1.9) can be estimated 
by linearizing about o(x). That is, we write formally 

(3.1) 
F L M  135 3 
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and neglect all terms that are quadratic in 
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obtaining 

1 

P 
Uc.1 $ z y  - m z )  [Y$ryy - $ry + U(4l = - - P ’ W  + v$y/yy> (3.2) 

which is a linear equation for $. 
Note that replacement of (1.9) by (3.2) is consistent with lubrication theory in the 

limit as R-tO (since in any case the whole left-hand side is neglected in that limit), 
and also with inviscid small-gap theory in the limit as R+ 00 (since that theory has 
the property that $ = oy). For intermediate R-values, it  is not entirely clear a priori 
how good an approximation (3.2) is. However, similar approximations (cf. Sparrow 
et al. 1964) have become standard in entrance-flow calculations. 

Although (3.2) is linear, it is still not straightforward to solve, for general g(z). 
However, in the special case where 

O(z) = U ,  h , / h ( z )  (3.3) 

for some constant U,, a further simplification occurs, and a closed-form solution can 
be found. Note that the inviscid small-gap solution has the property (3.3), with 
Uo = uo,and we expect that U, N uo in general, since that choice means that the net 
flux of U ( z )  agrees with that for the actual solution +. 

Suppose we substitute 
Uo h2 

11. = -$(X, h0 Y ) ,  

where 

Y = y / h ( z ) .  
Then (3.2) becomes 

where 
4 Y Y Y  -4xy = P‘(X)> 

p 1 h2 
pUi 2 h 2  

p(x)  = __ --0. 

(3.4) 

(3.6) 

(3.7) 

Equation (3.7) can be differentiated once with respect to Y to eliminate the pressure 
term ; thus we have finally a very simple partial differential equation 

4 Y Y Y Y  = $XYY (3.9) 

whose solution can be obtained by various standard methods. Note that (3.9) is a 
diffusion equation for the shear $yy. 

It is convenient to restrict attention to the case of a flat plate at angle of attack 
a, i.e. to assume that h ( z )  is given by (1.2). Then, from (3.5) 

h/ho = e-px, (3.10) 

where 
p = U ,  h o a / v .  

If we define the Laplace transform 

(3.11) 

(3.12) 
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it can then bc shown that (with t = s?), 

1 C Y  cosh ( t  Y )  - 1 t cosh t -  1 
s-2p  8 - P  

+u, A 
sinh (t Y )  - t Y LUtsinh t -  cosh t+ 1 

U,$(s, Y )  = -- + 

- u , e ]  (3.13) 
+ A  t(s -PI s -2p  

satisfies all requirements, if 

A ( s )  = 2-2cosht+tsinht. (3.14) 

That is, (3.13) clearly is a solution of the equation resulting from Laplace 
transforming (3.9); vanishes on Y = 0, and $y (s ,  0) is the Laplace transform of 

as required by (l.lO), (3.4) and (3.6). Similarly, $ y  
the Laplace transform of 

uo h2 
U,  h2 ' 

rj(X, 1) = -0 

(3.15) 

vanishes a t  Y = 1 ,  and $(s, 1)  is 

(3.16) 

as required by (1.14) and (3.4). The initial condition (1.12) is satisfied, as can be 
verified by letting P + 00 in (3.13). 

The corresponding pressure can be evaluated from (3.7) and (3.8). Thus from (3.7) 

U O P ( S )  = UoP(0)+u,  -- U + I[l;tJinht-coshf+l - uotsinht 1. (3.17) 
s s-P A s - P  s -2p  

Honce from (3.8), using (1.12) for p a t  x = 0, 

s-2p  1 ' tsinh t -  cosh t+  1 uo tsinh t - 
8-P 

(3.18) 

In ordcr to tako the inverse transform of (3.18), we need merely observe that p(s)  
is singular only where s = 0, /3,2/3, and a t  zeros of A ( s ) .  All such singularities can be 
shown tc be simple poles, whose residues can be evaluated. Thus, we can write as 
our final solution for the pressure 

u=-(uo- U0)Z Po - - ____I__ - 
P 2s 

uO(2p)? sinh (2p)t " U  Zu, h ( x )  % l P  
A(2P) pl(&y -4u o m , - l [ k 2 , + / 3  c k&+2@1(=)  ' 

(3.19) 

where z = Slc ,  is the mth root of the transcendental equation 

tanz = z .  (3.20) 

Note that s = - k2, is a zero of A ( s )  ; there are also zeros of d ( s )  a t  s = - 4m27c2, which 
contribute to r j  but not to  p .  I n  practice, since the lowest value of k2, is about 80, 
the sum in (3.19) is negligible for most x > 0, unless p is quite large. The series 
converges a t  z = 0, when h ( z ) / h ,  = 1 ,  because km+ (m+i) 7c as m+ co. However, its 
derivativc with respoct to x then does not converge at x = 0. That is, the initial 
pressure gradient is infinite. Indeed, it is a well-known property of such series that 

3-2 
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p’(x) possesses an inverse-square-root singularity as x J. 0 ;t this property also follows 
from (3.17) as s+  CQ, and is discussed further in $5. 

We can use (3.19) directly to solve the actual sliding-sheet problem, as follows. First 
we set. x = L,  i.e. h(x)/ho = 1 -aL/h,, and evaluate p ( L )  for a range of values of uo. 
We then select uo (by trial and error, although an automatic search could have been 
implemented) so that p ( L )  = 0. The net lift force 

r L  
F = p(x)dz  

J O  

and moment 
L 

M = xp(x)dx = Fxp, 
0 

(3.21) 

(3.22) 

where x = xp is the location of the centre of pressure, are then computed by evaluating 
p ( x )  a t  that value of uo, and using Simpson’s rule. 

The arbitrary linearization parameter Uo is generally set equal to uo. Numerical 
experimentation revealed that very wide variations, e.g. U,/uo values ranging from 
0.5 t.0 2.0, changed the value of F by less than 2 Yo, and had almost no effect at all 
on xp. This is a satisfactory conclusion, since insensitivity to the actual value of U,, 
confirms that the linearization process is acceptable. So long as convection is allowed 
to take place, i t  is not of major significance to  convect a t  exactly the right speed 
everywhere. 

4. Numerical boundary-layer solution 
The linearized solution (3.19) is explicit, and reasonably simple to use. However, 

it is based on an ad hoc linearization of the true governing boundary-layer equation 
(1.9). Clearly, a more satisfactory procedure would be to solve (1.9), or equivalently 
(2.17), by direct numerical methods. There are many such methods in the literature, 
e.g. as surveyed by Blottner (1975) or Keller (1978). 

In  spite of its parabolic character, which means that solution can proceed by 
‘marching ’ forward in the s-direction, a t  considerable saving over the elliptic 
Navier-Stokes equation (2.2), the boundary-layer equation (2.17) still presents 
formidable computational difficulties. I n  the present problem, remembering that 
solutions have to be repeated for a range Df values of uo a t  every separate specified 
Reynolds number and angle of attack, i t  is perhaps not reasonable to expect that 
such solutions can be used routinely. Instead, our present aim is to  provide a few 
‘ benchmark ’ numerical solutions, of effectively unlimited accuracy, to test the 
validity of the linearized solution (3.19). 

For that purpose, we have implemented the following relatively crude, but 
systematically improvable, algorithm. We use simple first-order-accurate backward 
differences with x-wise spacing Ax, i.e. set 

for all x > Ax. At the first non-zero station x = Ax, we halve (4.1), in order to model 
an xi initial dependence on the x-variable. The accuracy of the final results is a 
function of the spacing Ax, which can be reduced until an acceptable degree of 
precision is attained. 

i We are indebted to Dr Jane Pitman for this observation 
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If (4.1) is used to estimate $x and kxYy in (2.17), with $ and $c.,y assumed known 
at  the previous station x -  Ax,  then (2.17) becomes a 4th-order nonlinear ordinary 
differential equation, for $(x, y)  as a function of y, a t  fixed x .  This ordinary differential 
equation can, in principle, be solved to arbitrary precision. I n  practice, we use a finite 
grid of N points between y = 0 and y = h(x ) ,  and systematically increase N until the 
solution has converged to within acceptable accuracy. The actual 4th-order problem 
is a 2-point boundary-value problem, with $, $c., values prescribed at y = 0 and 
y = h(x) .  Naive ‘shooting‘ methods, in which Runge-Kutta initial-value solutions are 
Newton-iterated with respect to $yy, $yyy values a t  y = 0, until the solution fits the 
required $, $y values at y = h ( x ) ,  seem to work quite adequately. 

Results with 2-3-figure accuracy were obtainable using N = 20 points in the 
y-direction, although up to N = 50 was used for verification. As far as the x-wise 
spacing is concerned, AXIL = 0.05 was adequate except near x = 0, and A x / L  = 0.01 
was sometimes needed up to  x/L = 0.1. It is also only for small x that  large N-values 
are ever required, since only then are there rapid variations with respect to y, in the 
boundary layers near the walls. 

The pressure gradient is a direct output, being proportional to  the quantity 
$yyy(x, 0 )  that  is used as an iteration parameter to solve the 2-point boundary-value 
problem. The pressure itself is obtained by trapezoidal integration, with a leading-edge 
correction for the xi behaviour, and subject to the initial value given by (1.12). 

As inputs, we need the Reynolds number R and angle of attack a. We must then 
select a value of u, and make a run from x = 0 to x = L. If p = 0 a t  that  point, we 
are successful; otherwise we try a different uo. An initial choice for u, is obtained from 
the linearized solution, and in principle we must then repeat the solution for a range 
of u, values, and select one such that the desired exit condition is satisfied. However, 
the linearized theory appears to be very accurate (within 1 yo) as a prediction of the 
correct uo value, so that  very little such adjustment is needed. An additional feature 
reducing computational effort, is that one can re-scale the problem. That is, should 
p = 0 at a value C, + L ,  the solution so obtained can be re-interpreted as that  for 
a new Reynolds’ number R, = RL/L,. 

Converged results for the pressure, and its integrals for the lift and centre of 
pressure, with accuracies better than 0.5%, were obtained for 6 combinations of 
Reynolds number and angle of attack, and these are discussed in $5. 

5. Discussion of results 

various values of R and of the scaled angle of attack 
Results have been obtained using the numerical method described above, for 

which also measures the contraction rate of the converging channel. For the most 
part we concentrate on the pressure distribution p ( x ) .  

However, information about the actual fluid velocity is available and of interest, 
and figure 4 shows a set of computed streamlines for R = 9.6, Ol = 0.75. Note that 
the vertical scale is h,, and the horizontal scale is L ;  thus all streamlines in fact make 
small angles to the horizontal, as required, when h, < L. The streamlines shown are 
not claimed to be of high accuracy, since they were obtained by interpolating roughly, 
from N = 20 output $ values. 
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X I L  
FIGURE 4. Streamlines of gap-region flow at R = 9.6, Z = 0.75. 

The most interesting feature of figure 4 is a recirculating .bubble ' attached to the 
upper boundary, with reversed flow near that  boundary. The wall shear ~ ' y y  vanishes 
at two points on that boundary. 

Although this result is at first sight somewhat unexpected, i t  is one that also occurs 
within the context of lubrication theory (Schlichting 1960, p. 98). It can easily be 
shown (cf. Michell 1950, p. 85) that, if @ > 0.5, i.e. if the contraction rate of the 
converging channel is more than 2 :  1, reversed flow must occur near the beginning 
of the upper boundary, according to lubrication theory. However, in that case, there 
can be only one point on the wall where the shear $'y, vanishes, i e. lubrication theory 
demands that the flow already commences at x = 0 with a reversed flow near y = h,. 
Now that we have incorporated inertia, and, more important, have demanded that 
the flow commence with a forward-flowing uniform profile a t  x = 0, the same 
reversed-flow phenomenon can still occur a t  subsequent stations x > 0, but must 
commence with one zero-shear point, and end with another. 

Figures 5 and 6 give results for the pressure p ( x ) ,  for two cases R = 0.6, @ = 0.4, 
and R = 9.6,@ = 0.75 respectively. These are similar to the results obtained for other 
R, @ values, but represent the lowest and highest Reynolds numbers tried. I n  each 
case, we show: 

( i )  converged numerical bo7mdary-layer solutions : 
(ii) the linearized solution (3.19) ; 
(iii) lubrication theory (1.3) ; 
(iv) inviscid small-gap theory (1.4). 
The computations of figure 5 are for a relatively low Reynolds number H = 0.6, 
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X I L  

FIGURE 5.  Pressure results at R = 0.6, CZ = 0.4. 

Linearized m 

XiL 
FIGURE 6. Pressure results at R = 9.6, E = 0.75 

at  which we might expect lubrication theory to be reasonably accurate. This is true, 
in that the correct peak pressure is approximated to within 20% by lubrication 
theory. The main source of discrepancy is the difference in inlet condition. In  the 
present finite-R theory, the inlet velocity distribution is uniform, whereas lubrication 
theory assumes a parabolic distribution everywhere, including at the inlet. Of course 
neither assumption is strictly correct as a formal limiting result as R+O, and, for a 
correct low-Reynolds-number asymptotic theory near the inlet, we should have to 
revert to an elliptic Stokes-flow problem in which the flow just upstream of the inlet 
is affected by that in the gap (and vice versa). 
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Although, a t  such a low Reynolds number, we could not expect the inviscid theory 
to be valid, and this is confirmed by figure 5 ,  an interesting phenomenon occurs a t  
the very start of the gap, i.e. for small x .  It is clear then that what happens a t  first 
is that  boundary layers, of thickness 6 = O(vx/u,)i, start to grow at x = 0 on both 
walls y = 0 and y = h,. The layer on the fixed wall y = h, is of conventional Blasius 
character, involving a change from a zero velocity at y = h, to the velocity u, as 
(h,-y)/S+ co. The layer on the moving wall y = 0 is also of a Blasius-similarity 
character, but is somewhat unconventional, in that  it involves an adjustment 
between the wall velocity U at y = 0 and u, as y/S+ co. In  any case, i t  is clear that  
the initial effect is an O(xi) shrinking of the effective gap width. Initially, this is of 
greater significance than the O(x)  convergence of the channel walls. 

Meanwhile, an almost-uniform core flow takes place everywhere between these 2 
thin boundary layers, whose magnitude starts out a t  u,, but quickly changes. Indeed, 
this core flow is correctly described (at  least in the limit of small x) by inviscid small-gap 
theory, and that theory predicts that  its velocity must increase like xi to conserve 
mass, against the boundary-layer-induced narrowing of the gap. But this then implies 
that  the core pressure decreases like xi initially; that  is, the pressure gradient has a 
negative inverse-square-root singularity a t  x = 0. Note that this singularity is not strong 
enough to  influence the initial development of the wall boundary layers, which remain 
(to leading order) of Blasius or zero-pressure-gradient similarity character. 

The computed results confirm this initial behaviour in the pressure. The lower the 
Reynolds number R, the more closely confined to x = 0 does it occur, and eventually 
this presents formidable starting difficulties to  the numerical analysis. However, 
R = 0.6 is not too low to enable converged results that  display the behaviour. The 
scaled pressure in figure 5 drops quickly from its starting value 0.43, to a minimum 
of 0.38 at about x = 0.015, before increasing again, as the boundary layers absorb 
the core, and the effects of the converging walls begin to be felt. 

Another remarkable feature of these results is that, once this increase occurs, the 
pressure then follows a curve that, if extrapolated backwards to  x = 0, appears to 
emanate from the same value ( p  = 0.32 on figure 5 )  a t  which the inviscid theory 
commences. Note that this inviscid value corresponds to  a different u, value, namely 

u, = Uh(L)/h(O), (5 .2)  

from that found as part of the ‘exact ’ numerical solution. 
By contrast to  figure 5, figure 6 involves a relatively high Reynolds number 

R = 9.6. At the high-R end of the range, numerical difficulties occur not only for small 
x, but (in principle) throughout the computation. I n  compensation, the square-root 
singularity at x = 0 is weaker, since the initial wall boundary layers stay thin longer. 
Thus inviscid small-gap theory retains validity over a range of early x values, and 
that range increases as R increases. At R = 9.6, this range still only amounts to about 
the first quarter of the gap length, and the inviscid theory fails to predict the peak 
pressure by a factor of 2. Thus for accurate inviscid results we should need to  go to 
considerably higher R still. Lubrication theory is of course already quite inaccurate 
a t  R = 9.6. It may or may not be a coincidence that,  in both figures 5 and 6, if one 
adds the inviscid and lubrication results, one obtains a quite good approximation 
to the true pressure distribution. 

The linearized computations also shown in figures 5 and 6 are very interesting. 
Generally, the linearized theory overestimates the pressure in the forward half of the 
gap by about 12 yo, but becomes accurate toward the trailing edge. The linearized 
theory, like the exact theory, possesses an inverse-square-root singularity in the 
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FIGURE a. Location x = xp of centre of pressure as a function of Reynolds number R for 

various contraction ratios ti. 

pressure gradient a t  x = 0 but this singularity is of the wrong sign, at least for 
u,,/ U < 0.5. That is, according to the linearized theory, the pressure initially increases 
above its starting value, rather than decreases as it should. 

In view of the fact that the process of linearization has destroyed any possibility 
of achieving nonlinear Blasius-type wall boundary layers, we should not be surprised 
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R 
FIGURE 9. Net lift and contraction ratio as a function of Reynolds number R for those 

solutions having x,/L = 0.5. 

that it fails to predict the initial pressure variation correctly. However, this does not 
seem to be a particularly serious defect from the arithmetical point of view, since, in 
spite of the incorrect sign to the pressure gradient, the pressure itself stays reasonably 
close to  the correct value. 

Figures 7 and 8 give results for the net lift force F and centre of pressure xp, as 
defined by (3.21) and (3.22) respectively. These are expressed as functions of Reynolds 
number R, for various values of a. The curves shown are based on the linearized theory. 
The 6 crosses represent ‘exact ’ numerical boundary-layer solutions. Over the broad 
range of €2, a values shown, the linearized theory appears to overestimate F by a 
consistent 10 yo, while underestimating xp by 5 yo. Lubrication theory can be used to 
give the asymptotic behaviour as R+O, and inviscid small gap theory as R+ 00, in 
figures 7 and 8. 

Finally, figure 9 gives plots of F and a against R, for those solutions such that 
xp = $L. These results were obtained by extracting linearized values from figures 7 
and 8, and applying the appropriate 10 Yo and 5 O h  corrections respectively. Figure 
9 contains information that can be used to study the dynamics of freely sliding 
uniformly weighted sheets, whose total weight must equal F ,  and whose centre of 
gravity is located a t  x = $L. 
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